Review of Vascular Closure Devices

599 - 607

Bryan G. Schwartz, MDa, Steven Burstein, MDb, Christina Economides, MDb, Robert A. Kloner, MD, PhDa,c, David M. Shavelle, MDc, Guy S. Mayeda, MDb

Active Vascular Closure Devices

Cardiva Catalyst (Boomerang). The Cardiva Catalyst (Cardiva Medical, Inc., Sunnyvale, California) uniquely facilitates hemostasis through the existing arterial sheath, although MC is still required. The Cardiva Catalyst is indicated for diagnostic or interventional procedures with sheath sizes up to 7 Fr. The device is inserted through the existing sheath. Once the tip is within the arterial lumen, a conformable 6.5 mm disk is deployed similar to an umbrella. The sheath is removed and the disk is gently pulled against the arterial wall where it is held in place by a tension clip. The disk, which is coated with protamine sulfate, provides temporary intravascular tamponade, facilitating physiologic vessel contraction and thrombosis. After 15 minutes of “dwell time” (120 minutes for interventional cases) the device is withdrawn and light MC is held for 5 minutes. The Cardiva Catalyst successfully facilitated hemostasis in 99% of 96 patients undergoing diagnostic catheterization with a 5 Fr sheath without any major vascular complications and with minor complications in 5% (rebleeding during bed rest).22 Most patients can ambulate 90 minutes after a diagnostic procedure with this device. The Cardiva Catalyst device does not leave any material behind in the body which minimizes the risk of ischemic and infectious complications and allows for repeat vascular access. The Cardiva Catalyst is compatible with most patients and has been used successfully in limited numbers of patients with peripheral vascular disease (6 patients), profunda artery or femoral bifurcation arteriotomies (19 patients), internal jugular arteriotomies (18 patients), and in pediatric patients.22,23 Collagen plug device: Angio-Seal. The Angio-Seal device (St. Jude Medical, Minnetonka, Minnesota) contains a small, flat, absorbable rectangular anchor (2 x 10 mm) an absorbable collagen plug and an absorbable suture (Figure 2).24 First, the existing arterial sheath is exchanged for a specially designed 6 Fr or 8 Fr sheath with an arteriotomy locator. Once blood return confirms proper positioning within the arterial lumen, the sheath is held firmly in place while the guidewire and arteriotomy locator are removed. The Angio-Seal device is inserted into the sheath until it snaps in place. Next, the anchor is deployed and pulled back against the arterial wall. As the device is withdrawn further the collagen plug is exposed just outside the arterial wall and the remainder of the device is removed from the tissue track. Finally, the suture which connects the anchor, the collagen plug, and the device is cut below skin level leaving behind only the anchor, collagen plug and suture, all of which are absorbable. Although Angio-Seal labeling indicates compatibility with 8 Fr or smaller procedural sheaths, the Angio-Seal has been used successfully to close 10 Fr arteriotomies utilizing a “double wire” technique.25 With this technique, at the conclusion of the procedure the Angio-Seal wire and a second, additional wire are placed through the sheath. The Angio-Seal is deployed in standard fashion using the Angio-Seal wire, leaving the second wire in place. If hemostasis is achieved, the second wire is carefully removed while maintaining pressure on the collagen plug. If hemostasis is not achieved, the second wire serves as a “back up/safety” to allow deployment of a second Angio-Seal device. Using this “double wire” technique, 21 of 21 arteriotomies > 8 Fr (17 were 10 Fr) were successfully closed (18 with a single device, 3 required a second device).25 In 4525 patients undergoing interventional procedures (89% with 8–9 Fr sheaths) the Angio-Seal had a device success of 97%.26 The Angio-Seal device significantly improved patient comfort at the time of discharge compared with MC.27 Compared with the FemoStop device, patients treated with the Angio-Seal device had significantly less discomfort at 4 and at 8 hours after the procedure.20 Angio-Seal safety data are described in detail below, but it reduced the risk of major vascular complications compared with MC in meta-analyses.28,29 Collagen plug device: Mynx. The Mynx Vascular Closure Device (AccessClosure, Mountain View, California) features a polyethylene glycol sealant (“hydrogel”) that deploys outside the artery while a balloon occludes the arteriotomy site within the artery (Figure 3).30 The Mynx device is inserted through the existing procedural sheath and a small semicompliant balloon is inflated within the artery and pulled back to the arterial wall, serving as an anchor to ensure proper placement. The sealant is then delivered just outside the arterial wall where it expands to achieve hemostasis. Finally, the balloon is deflated and removed through the tract leaving behind only the expanded, conformable sealant. The Mynx device was investigated prospectively in 190 patients (50% interventional, 94% 6 Fr)30 and retrospectively in 238 patients (100% diagnostic and 6 Fr).31 Device success was achieved in 91–93%.30,31 Mean time to hemostasis was 1.3 minutes and mean time to ambulation was 2.6 hours.30 Six of 190 patients (3.2%) developed a hematoma > 6 cm2,30 and major complications occurred in 2.1%.31 The Mynx device leads to rapid hemostasis and ambulation, but additional studies are needed to confirm its safety. The Mynx is indicated for interventional and diagnostic procedures and, in addition to the 6/7 Fr model, a 5 Fr device was recently introduced. Polyglycolic Acid (PGA) plug device: ExoSeal. The ExoSeal device (Cordis Corporation, Miami Lakes, Florida) delivers a synthetic, bioabsorbable plug to the extravascular space adjacent to the arteriotomy using visual guidance for 6 Fr arteriotomy closure. In a randomized trial of 401 patients (41% interventional) device success was 94%, ambulation occurred in a mean of 2.5 hours and complication rates were not significantly different from MC.32 FISH. The FISH device (Morris Innovative, Bloomington, Indiana) is indicated for diagnostic procedures using 5–8 Fr procedural sheaths and uses a bioabsorbable extracellular matrix “patch” made from porcine small intestinal submucosa (SIS). The “patch”, which resembles a roll of wrapping paper, is inserted through the arteriotomy so that it straddles the arterial wall, then a wire is pulled to release the “patch” from the device. Next, a compression suture is pulled which incorporates the patch firmly in place. In a randomized trial of 297 patients (100% diagnostic, 90% 5–6 Fr) device success was 98%, which did not include the 27 early withdrawals and mean time to ambulation was 2.4 hours.33 More data are needed regarding the safety of the FISH device and of concern is that the patch resides on both sides of the vessel wall, meaning a portion of the patch remains intravascular. Clip device: Starclose. The Starclose device (Abbott Vascular, Redwood City, California) achieves hemostasis with a 4 mm nitinol clip implant (Figure 4).34 The device is inserted into the arterial lumen then “wings” are deployed such that when the device is withdrawn the wings are pulled against the arterial wall indicating proper positioning. The clip is then deployed just outside the arterial wall. The clip grasps the edges of the arteriotomy drawing them together for closure. The Starclose device is labeled for diagnostic and interventional procedures and for closure of 5–6 Fr arteriotomies, but has been used with 7–8 Fr arteriotomies. The device success of Starclose is reported as 87%–97% (majority interventional)34–38 and 91% with 7–8 Fr sheaths.39 For patients treated on an outpatient basis the median length of stay was 157 minutes.38 Minor complications were observed in 4%,34 11%,39 and 15%.36 Major complications were reported in 1%,34,36 2%,37,38 and 3.5% (7–8 Fr sheaths).39 Persistent oozing at the arteriotomy site was reported in 38% of patients treated with Starclose, which was significantly more than with Angio-Seal (21%; p = 0.001).35 Oozing of blood contributed to a significantly lower rate of successful hemostasis (Starclose 94%, Angio-Seal 99%, MC 100%; p = 0.002).35 In some patients oozing persisted for over 24 hours.35 At 1 month after the procedure, patients treated with Starclose had less pain at the puncture site than patients treated with MC.35 Complications requiring surgical repair have been reported in up to 1.3% of patients treated with the Starclose device.34,36,37,39 Case reports involving the Starclose device describe femoral artery laceration,40 arterial occlusion due to device capture of the anterior and posterior arterial walls,41 and high-grade stenosis causing debilitating symptoms 3 weeks after closure.42 In conclusion, the Starclose device improves patient comfort and bed rest time, but its utility may be limited in patients receiving anticoagulation because of persistent oozing. Suture devices: Perclose. Perclose (Abbott Vascular) offers suture-mediated VCDs that have evolved from the Prostar in 1994, to the Techstar, to the Closer, to the Perclose A-T, to the ProGlide. Originally, the Prostar and Techstar featured needles that were deployed within the arterial lumen and directed towards the skin, through the arterial wall. The Closer introduced a fundamental change whereby the needles were deployed outside of the artery and directed inward. To operate the ProGlide, the device is inserted over a guidewire until blood return indicates positioning within the lumen (Figure 5). Then, a lever is pulled which deploys “feet” within the arterial lumen. The device is gently pulled back positioning the feet against the anterior arterial wall. Needle deployment and formation of a suture loop is fully automated by depressing a plunger on the device. As the plunger is depressed, two needles are deployed within the tissue track and directed towards the feet. As the plunger is depressed further the needles are advanced through the arterial wall and into the feet. The feet capture the needles, creating a suture loop. The device (containing the needles) is then removed, leaving behind the two suture tails. A knot is tied and pushed toward the arteriotomy to achieve hemostasis. The 6 Fr ProGlide is designed for procedures using 5–8 Fr sheaths, whereas the Prostar is used with 8.5–10 Fr sheaths. The Prostar uses 4 needles (two sutures) directed outward from within the arterial lumen. First, the Prostar is advanced over a guidewire until blood return indicates proper placement, which is confirmed visually (Figure 6). By pulling on the device handle, the needles are deployed and pulled through the arterial wall.

Post new comment

  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.

More information about formatting options

Enter the characters shown in the image.